# The Mardešić conjecture and free products of Boolean algebras

#### **Grzegorz Plebanek**

University of Wrocław

#### joint work with Gonzalo Martínez-Cervantes (Murcia)

#### Winter School in Abstract Analysis Hejnice, January 2018

Supported by Fundación Séneca – Agencia de Ciencia y Tecnología de la Región de Murcia, through its Regional Programme *Jiménez de la Espada*.

イロト イポト イヨト イヨト 二日

### Preliminaries

Slang: A compact line is a compact linearly ordered topological space (connected or not).

- Slang: A compact line is a compact linearly ordered topological space (connected or not).
- ② Typically, a metrizable compact line maps continuously onto its square, 2<sup>ω</sup> <sup>onto</sup>/<sub>2</sub> 2<sup>ω</sup> × 2<sup>ω</sup>, [0,1] <sup>onto</sup>/<sub>2</sub> [0,1] × [0,1].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- Slang: A compact line is a compact linearly ordered topological space (connected or not).
- ② Typically, a metrizable compact line maps continuously onto its square, 2<sup>ω</sup> <sup>onto</sup>/<sub>2</sub> 2<sup>ω</sup> × 2<sup>ω</sup>, [0,1] <sup>onto</sup>/<sub>2</sub> [0,1] × [0,1].

• If *L* is a nonmetrizable compact line then there is no continuous surjection  $L \xrightarrow{\text{onto}} L \times L$ .

- Slang: A compact line is a compact linearly ordered topological space (connected or not).
- ② Typically, a metrizable compact line maps continuously onto its square, 2<sup>ω</sup> <sup>onto</sup>/<sub>2</sub> 2<sup>ω</sup> × 2<sup>ω</sup>, [0,1] <sup>onto</sup>/<sub>2</sub> [0,1] × [0,1].
- If L is a nonmetrizable compact line then there is no continuous surjection  $L \xrightarrow{\text{onto}} L \times L$ .
- Treybig (1964) If a compact line L maps continuously onto K<sub>1</sub> × K<sub>2</sub>, where K<sub>1</sub>, K<sub>2</sub> are infinite, then both K<sub>1</sub> and K<sub>2</sub> are metrizable;

- Slang: A compact line is a compact linearly ordered topological space (connected or not).
- ② Typically, a metrizable compact line maps continuously onto its square, 2<sup>ω</sup> <sup>onto</sup>/<sub>2</sub> 2<sup>ω</sup> × 2<sup>ω</sup>, [0,1] <sup>onto</sup>/<sub>2</sub> [0,1] × [0,1].
- If L is a nonmetrizable compact line then there is no continuous surjection  $L \xrightarrow{\text{onto}} L \times L$ .
- Treybig (1964) If a compact line L maps continuously onto K<sub>1</sub> × K<sub>2</sub>, where K<sub>1</sub>, K<sub>2</sub> are infinite, then both K<sub>1</sub> and K<sub>2</sub> are metrizable;

- Slang: A compact line is a compact linearly ordered topological space (connected or not).
- ② Typically, a metrizable compact line maps continuously onto its square, 2<sup>ω</sup> <sup>onto</sup>/<sub>2</sub> 2<sup>ω</sup> × 2<sup>ω</sup>, [0,1] <sup>onto</sup>/<sub>2</sub> [0,1] × [0,1].
- If *L* is a nonmetrizable compact line then there is no continuous surjection  $L \xrightarrow{\text{onto}} L \times L$ .
- Treybig (1964) If a compact line L maps continuously onto K<sub>1</sub> × K<sub>2</sub>, where K<sub>1</sub>, K<sub>2</sub> are infinite, then both K<sub>1</sub> and K<sub>2</sub> are metrizable; cf. Bula, Dębski, Kulpa (1981).

## Mardešić (1970, 2015)

#### The conjecture

If  $L_1, L_2, \ldots, L_d$  are compact lines and there is a continuous

$$L_1 \times L_2 \times \ldots \times L_d \xrightarrow{\text{onto}} K_1 \times K_2 \times \ldots \times K_d \times K_{d+1},$$

where all  $K_i$  are infinite, then  $K_i, K_j$  is metrizable for some  $1 \le i < j \le d+1$ .

#### The conjecture

If  $L_1, L_2, \ldots, L_d$  are compact lines and there is a continuous

$$L_1 \times L_2 \times \ldots \times L_d \xrightarrow{\text{onto}} K_1 \times K_2 \times \ldots \times K_d \times K_{d+1},$$

where all  $K_i$  are infinite, then  $K_i, K_j$  is metrizable for some  $1 \le i < j \le d+1$ .

#### Theorem

Yes, indeed.

★ロ> ★週> ★目> ★目> 目 のQC

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$  so that

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$  so that

• free-dim(L)  $\leq 1$  for every compact line;

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$  so that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

- free-dim $(L) \leq 1$  for every compact line;
- Gree-dim(K<sub>1</sub> × K<sub>2</sub>) ≤ free-dim(K<sub>1</sub>) + free-dim(K<sub>2</sub>) for any compacta;

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$  so that

- free-dim $(L) \leq 1$  for every compact line;
- Generating (K<sub>1</sub> × K<sub>2</sub>) ≤ free-dim(K<sub>1</sub>) + free-dim(K<sub>2</sub>) for any compacta;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

• free-dim $(L_1 \times \ldots \times L_d) \le d$  for compact lines  $L_i$ ;

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$  so that

- free-dim $(L) \leq 1$  for every compact line;
- Generating (K<sub>1</sub> × K<sub>2</sub>) ≤ free-dim(K<sub>1</sub>) + free-dim(K<sub>2</sub>) for any compacta;
- free-dim $(L_1 \times \ldots \times L_d) \le d$  for compact lines  $L_i$ ;
- Gree-dim(K') ≤ free-dim(K) whenever there is a continuous K → K'.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$  so that

- free-dim $(L) \leq 1$  for every compact line;
- Generating (K<sub>1</sub> × K<sub>2</sub>) ≤ free-dim(K<sub>1</sub>) + free-dim(K<sub>2</sub>) for any compacta;
- free-dim $(L_1 \times \ldots \times L_d) \le d$  for compact lines  $L_i$ ;
- Gree-dim(K') ≤ free-dim(K) whenever there is a continuous K → K'.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$  so that

- free-dim $(L) \le 1$  for every compact line;
- Generating (K<sub>1</sub> × K<sub>2</sub>) ≤ free-dim(K<sub>1</sub>) + free-dim(K<sub>2</sub>) for any compacta;
- free-dim $(L_1 \times \ldots \times L_d) \le d$  for compact lines  $L_i$ ;
- Gree-dim(K') ≤ free-dim(K) whenever there is a continuous K → K'.

Then Conjecture follows from

#### Theorem

Given a compact space K, we define free-dim $(K) \in \mathbb{N} \cup \{\infty\}$  so that

- free-dim $(L) \leq 1$  for every compact line;
- Generating (K<sub>1</sub> × K<sub>2</sub>) ≤ free-dim(K<sub>1</sub>) + free-dim(K<sub>2</sub>) for any compacta;
- free-dim $(L_1 \times \ldots \times L_d) \le d$  for compact lines  $L_i$ ;
- Gree-dim(K') ≤ free-dim(K) whenever there is a continuous K → K'.

Then Conjecture follows from

#### Theorem

If  $K_1, \ldots, K_d$  are nonmetrizable compacta and  $K_{d+1}$  is a infinite compact space then

free 
$$-\dim(K_1 \times K_2 \times \ldots \times K_d \times K_{d+1}) \ge d+1.$$

### Finite closed covers

Given  $x_0 = \min L < x_1 < \ldots < x_n = \max L$ ,



Given  $x_0 = \min L < x_1 < \ldots < x_n = \max L$ ,  $\mathscr{C} = \{[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]\}$  is a finite closed cover of L.

Given  $x_0 = \min L < x_1 < \ldots < x_n = \max L$ ,  $\mathscr{C} = \{ [x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n] \}$  is a finite closed cover of *L*. Let  $\mathfrak{C}$  be the family of all such covers. Then

𝔅 is topologically cofinal, i.e. for every open cover of *L* there is finer 𝒞 ∈ 𝔅;

Given  $x_0 = \min L < x_1 < \ldots < x_n = \max L$ ,  $\mathscr{C} = \{ [x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n] \}$  is a finite closed cover of *L*. Let  $\mathfrak{C}$  be the family of all such covers. Then

- 𝔅 is topologically cofinal, i.e. for every open cover of *L* there is finer 𝒞 ∈ 𝔅;
- for  $\mathscr{C}_1, \mathscr{C}_2 \in \mathbb{C}$  there is a finite closed cover  $\mathscr{C}$  such that  $\mathscr{C} \prec \mathscr{C}_1, \mathscr{C}_2$  and

 $|\mathscr{C}| \leq 2(|\mathscr{C}_1| + |\mathscr{C}_2|).$ 

イロン イロン イヨン イヨン 三日

### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$ 



### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$  if there are M > 0 and

• a topologically cofinal family  $\mathbb C$  of finite closed covers of K;

(日) (四) (王) (王) (王)

### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$  if there are M > 0 and

• a topologically cofinal family  $\mathbb C$  of finite closed covers of K;

(日) (四) (王) (王) (王)

• 
$$\chi: \mathbb{C} \to \mathbb{N};$$

### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$  if there are M > 0 and

• a topologically cofinal family  $\mathbb C$  of finite closed covers of K;

(日) (四) (王) (王) (王)

• 
$$\chi: \mathbb{C} \to \mathbb{N};$$

#### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$  if there are M > 0 and

- a topologically cofinal family  $\mathbb{C}$  of finite closed covers of K;
- $\chi : \mathbb{C} \to \mathbb{N};$

such that for every k. and  $\mathscr{C}_1, \ldots, \mathscr{C}_k \in \mathbb{C}$  there is a finite closed cover  $\mathscr{C}$  such that  $\mathscr{C} \prec \mathscr{C}_1, \ldots, \mathscr{C}_k$  and

$$|\mathscr{C}| \leq M \cdot (\chi(\mathscr{C}_1) + \dots \chi(\mathscr{C}_k))^d.$$

#### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$  if there are M > 0 and

- a topologically cofinal family  $\mathbb C$  of finite closed covers of K;
- $\chi : \mathbb{C} \to \mathbb{N};$

such that for every k. and  $\mathscr{C}_1, \ldots, \mathscr{C}_k \in \mathbb{C}$  there is a finite closed cover  $\mathscr{C}$  such that  $\mathscr{C} \prec \mathscr{C}_1, \ldots, \mathscr{C}_k$  and

$$|\mathscr{C}| \leq M \cdot (\chi(\mathscr{C}_1) + \dots \chi(\mathscr{C}_k))^d.$$

**1** Think that 
$$\chi(\mathscr{C}) = |\mathscr{C}|$$
.

#### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$  if there are M > 0 and

- a topologically cofinal family  $\mathbb{C}$  of finite closed covers of K;
- $\chi : \mathbb{C} \to \mathbb{N};$

such that for every k. and  $\mathscr{C}_1, \ldots, \mathscr{C}_k \in \mathbb{C}$  there is a finite closed cover  $\mathscr{C}$  such that  $\mathscr{C} \prec \mathscr{C}_1, \ldots, \mathscr{C}_k$  and

$$|\mathscr{C}| \leq M \cdot (\chi(\mathscr{C}_1) + \dots \chi(\mathscr{C}_k))^d.$$

- **1** Think that  $\chi(\mathscr{C}) = |\mathscr{C}|$ .
- ② free-dim(K) ≥ d + 1 if  $\neg$ (free-dim(K) ≤ d) etc.

#### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$  if there are M > 0 and

- a topologically cofinal family  $\mathbb{C}$  of finite closed covers of K;
- $\chi : \mathbb{C} \to \mathbb{N};$

such that for every k. and  $\mathscr{C}_1, \ldots, \mathscr{C}_k \in \mathbb{C}$  there is a finite closed cover  $\mathscr{C}$  such that  $\mathscr{C} \prec \mathscr{C}_1, \ldots, \mathscr{C}_k$  and

$$|\mathscr{C}| \leq M \cdot (\chi(\mathscr{C}_1) + \dots \chi(\mathscr{C}_k))^d.$$

- Think that  $\chi(\mathscr{C}) = |\mathscr{C}|$ .
- 2 free-dim $(K) \ge d+1$  if  $\neg$ (free-dim $(K) \le d$ ) etc.
- 3 free-dim(K) = 0 iff K is finite.

#### Definition

Say that free-dim $(K) \leq d \in \mathbb{N}$  if there are M > 0 and

- a topologically cofinal family  $\mathbb{C}$  of finite closed covers of K;
- $\chi : \mathbb{C} \to \mathbb{N};$

such that for every k. and  $\mathscr{C}_1, \ldots, \mathscr{C}_k \in \mathbb{C}$  there is a finite closed cover  $\mathscr{C}$  such that  $\mathscr{C} \prec \mathscr{C}_1, \ldots, \mathscr{C}_k$  and

$$|\mathscr{C}| \leq M \cdot (\chi(\mathscr{C}_1) + \dots \chi(\mathscr{C}_k))^d.$$

- Think that  $\chi(\mathscr{C}) = |\mathscr{C}|$ .
- ② free-dim(K) ≥ d + 1 if  $\neg$ (free-dim(K) ≤ d) etc.
- free-dim(K) = 0 iff K is finite.
- free-dim(K) = 1 for every infinite metric compactum.

## The crucial fact, once again

・ロト・西ト・モン・モン・ ヨー うへで

(ロ) (四) (E) (E) (E) (E)

### Theorem

#### Theorem

If  $K_1, \ldots, K_d$  are nonmetrizable compacta and  $K_{d+1}$  is a infinite compact space then

free  $-\dim(K_1 \times K_2 \times \ldots \times K_d \times K_{d+1}) \ge d+1.$ 

### free-dim of Stone spaces of Boolean algebras

## free-dim of Stone spaces of Boolean algebras

### Stone duality

Given a Boolean algebra  $\mathfrak{A}$ ,  $K_{\mathfrak{A}}$  denotes its Stone space, so that  $\operatorname{clop}(K_{\mathfrak{A}})$  is isomorphic to  $\mathfrak{A}$ .

Given a Boolean algebra  $\mathfrak{A}$ ,  $K_{\mathfrak{A}}$  denotes its Stone space, so that  $\operatorname{clop}(K_{\mathfrak{A}})$  is isomorphic to  $\mathfrak{A}$ .

A Boolean algebra  $\mathfrak{A}$  is **interval algebra** if  $\mathfrak{A} = \langle \Gamma \rangle$  for some chain.

Given a Boolean algebra  $\mathfrak{A}$ ,  $K_{\mathfrak{A}}$  denotes its Stone space, so that  $\operatorname{clop}(K_{\mathfrak{A}})$  is isomorphic to  $\mathfrak{A}$ .

A Boolean algebra  $\mathfrak{A}$  is **interval algebra** if  $\mathfrak{A} = \langle \Gamma \rangle$  for some chain.

The Stone space of an interval algebra is a compact line.

Given a Boolean algebra  $\mathfrak{A}$ ,  $K_{\mathfrak{A}}$  denotes its Stone space, so that  $\operatorname{clop}(K_{\mathfrak{A}})$  is isomorphic to  $\mathfrak{A}$ .

A Boolean algebra  $\mathfrak{A}$  is **interval algebra** if  $\mathfrak{A} = \langle \Gamma \rangle$  for some chain. The Stone space of an interval algebra is a compact line.

### Theorem

If  $\mathfrak{A}_1,\ldots,\mathfrak{A}_d$  are uncountable Boolean algebras and  $\mathfrak{A}_{d+1}$  is infinite then the free product

$$\mathfrak{A}_1 \otimes \ldots \otimes \mathfrak{A}_d \otimes \mathfrak{A}_{d+1} \not\hookrightarrow \mathfrak{B}_1 \otimes \ldots \otimes \mathfrak{B}_d$$

for any interval algebras  $\mathfrak{B}_i$ .

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

### Theorem

Suppose that  $\mathfrak{B} = \langle \Gamma \rangle$ , where  $\Gamma$  contains no d+1 independent elements.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

### Theorem

Suppose that  $\mathfrak{B} = \langle \Gamma \rangle$ , where  $\Gamma$  contains no d+1 independent elements. Then free-dim $(\mathcal{K}_{\mathfrak{B}}) \leq d$ 

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

#### Theorem

Suppose that  $\mathfrak{B} = \langle \Gamma \rangle$ , where  $\Gamma$  contains no d+1 independent elements.

Then free-dim( $\mathcal{K}_{\mathfrak{B}}$ )  $\leq d$  so  $\mathfrak{B}$  contains no subalgebra of the form  $\mathfrak{A}_1 \otimes \ldots \otimes \mathfrak{A}_d \otimes \mathfrak{A}_{d+1}$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

#### Theorem

Suppose that  $\mathfrak{B} = \langle \Gamma \rangle$ , where  $\Gamma$  contains no d+1 independent elements.

Then free-dim( $\mathcal{K}_{\mathfrak{B}}$ )  $\leq d$  so  $\mathfrak{B}$  contains no subalgebra of the form  $\mathfrak{A}_1 \otimes \ldots \otimes \mathfrak{A}_d \otimes \mathfrak{A}_{d+1}$ .

### Proof.

For any finite  $F \subseteq \Gamma$ , let  $\mathscr{C}_F$  be a finite closed cover of  $\mathcal{K}_{\mathfrak{B}}$  determined by the atoms of  $\langle F \rangle$ .

#### Theorem

Suppose that  $\mathfrak{B} = \langle \Gamma \rangle$ , where  $\Gamma$  contains no d+1 independent elements.

Then free-dim( $\mathcal{K}_{\mathfrak{B}}$ )  $\leq d$  so  $\mathfrak{B}$  contains no subalgebra of the form  $\mathfrak{A}_1 \otimes \ldots \otimes \mathfrak{A}_d \otimes \mathfrak{A}_{d+1}$ .

#### Proof.

For any finite  $F \subseteq \Gamma$ , let  $\mathscr{C}_F$  be a finite closed cover of  $\mathcal{K}_{\mathfrak{B}}$  determined by the atoms of  $\langle F \rangle$ . Check, using the Sauer-Shelah lemma, that the family

$$\mathbb{C} = \big\{ \mathscr{C}_F : F \in [\Gamma]^{<\omega} \big\},\,$$

witnesses that free-dim( $K_{\mathfrak{B}}$ )  $\leq d$ .

## The Sauer-Shelah lemma

▲□→ ▲圖→ ▲目→ ▲目→ 目 めんの

#### Lemma

Let N, d be natural numbers with  $0 \le d < N$  and let  $T = \{1, 2, ..., N\}$ . Then for every family  $C \subseteq 2^T$  with

$$|C| > {\binom{N}{0}} + {\binom{N}{1}} + \dots + {\binom{N}{d}},$$

there exists a set  $S \subseteq T$  with |S| = d+1 such that  $\{f|_S : f \in C\} = 2^S$ .