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Preliminaries

1 Slang: A compact line is a compact linearly ordered
topological space (connected or not).

2 Typically, a metrizable compact line maps continuously onto

its square, 2ω onto−→ 2ω ×2ω , [0,1]
onto−→ [0,1]× [0,1].

3 If L is a nonmetrizable compact line then there is no

continuous surjection L
onto−→ L×L.

4 Treybig (1964) If a compact line L maps continuously onto
K1×K2, where K1,K2 are infinite, then both K1 and K2 are
metrizable; cf. Bula, Dȩbski, Kulpa (1981).
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Mardešić (1970, 2015)

The conjecture

If L1,L2, . . . ,Ld are compact lines and there is a continuous

L1×L2× . . .×Ld
onto−→ K1×K2× . . .×Kd ×Kd+1,

where all Ki are infinite, then Ki ,Kj is metrizable for some
1≤ i < j ≤ d + 1.

Theorem

Yes, indeed.
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Free dimension of compacta

Given a compact space K , we define free-dim(K ) ∈N∪{∞} so that

1 free-dim(L)≤ 1 for every compact line;

2 free-dim(K1×K2)≤ free-dim(K1) + free-dim(K2) for any
compacta;

3 free-dim(L1× . . .×Ld)≤ d for compact lines Li ;

4 free-dim(K ′)≤ free-dim(K ) whenever there is a continuous

K
onto−→ K ′.

Then Conjecture follows from

Theorem

If K1, . . . ,Kd are nonmetrizable compacta and Kd+1 is a infinite
compact space then

free−dim
(
K1×K2× . . .×Kd ×Kd+1

)
≥ d + 1.
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Finite closed covers

A certain property of a compact line L

Given x0 = minL< x1 < .. . < xn = maxL,
C = {[x0,x1], [x1,x2], . . . , [xn−1,xn]} is a finite closed cover of L.
Let C be the family of all such covers. Then

C is topologically cofinal, i.e. for every open cover of L there
is finer C ∈ C;

for C1,C2 ∈ C there is a finite closed cover C such that
C ≺ C1,C2 and

|C | ≤ 2
(
|C1|+ |C2|

)
.
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Definition of free-dim

Definition

Say that free-dim(K )≤ d ∈ N if there are M > 0 and

a topologically cofinal family C of finite closed covers of K ;

χ : C→ N;

such that for every k . and C1, . . . ,Ck ∈ C there is a finite closed
cover C such that C ≺ C1, . . . ,Ck and

|C | ≤M ·
(
χ(C1) + . . .χ(Ck)

)d
.

Remarks

1 Think that χ(C ) = |C |.
2 free-dim(K )≥ d + 1 if ¬(free-dim(K )≤ d) etc.

3 free-dim(K ) = 0 iff K is finite.

4 free-dim(K ) = 1 for every infinite metric compactum.
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free-dim of Stone spaces of Boolean algebras

Stone duality

Given a Boolean algebra A, KA denotes its Stone space, so that
clop(KA) is isomorphic to A.
A Boolean algebra A is interval algebra if A = 〈Γ〉 for some chain.
The Stone space of an interval algebra is a compact line.

Theorem

If A1, . . . ,Ad are uncountable Boolean algebras and Ad+1 is infinite
then the free product

A1⊗ . . .⊗Ad ⊗Ad+1 6↪→B1⊗ . . .⊗Bd

for any interval algebras Bi .
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A generalization; cf. Heindorf (1997)

Theorem

Suppose that B = 〈Γ〉, where Γ contains no d + 1 independent
elements.
Then free-dim(KB)≤ d so B contains no subalgebra of the form
A1⊗ . . .⊗Ad ⊗Ad+1.

Proof.

For any finite F ⊆ Γ, let CF be a finite closed cover of KB

determined by the atoms of 〈F 〉.
Check, using the Sauer-Shelah lemma, that the family

C =
{
CF : F ∈ [Γ]<ω

}
,

witnesses that free-dim(KB)≤ d .



A generalization; cf. Heindorf (1997)

Theorem

Suppose that B = 〈Γ〉, where Γ contains no d + 1 independent
elements.

Then free-dim(KB)≤ d so B contains no subalgebra of the form
A1⊗ . . .⊗Ad ⊗Ad+1.

Proof.

For any finite F ⊆ Γ, let CF be a finite closed cover of KB

determined by the atoms of 〈F 〉.
Check, using the Sauer-Shelah lemma, that the family

C =
{
CF : F ∈ [Γ]<ω

}
,

witnesses that free-dim(KB)≤ d .



A generalization; cf. Heindorf (1997)

Theorem

Suppose that B = 〈Γ〉, where Γ contains no d + 1 independent
elements.
Then free-dim(KB)≤ d

so B contains no subalgebra of the form
A1⊗ . . .⊗Ad ⊗Ad+1.

Proof.

For any finite F ⊆ Γ, let CF be a finite closed cover of KB

determined by the atoms of 〈F 〉.
Check, using the Sauer-Shelah lemma, that the family

C =
{
CF : F ∈ [Γ]<ω

}
,

witnesses that free-dim(KB)≤ d .



A generalization; cf. Heindorf (1997)

Theorem

Suppose that B = 〈Γ〉, where Γ contains no d + 1 independent
elements.
Then free-dim(KB)≤ d so B contains no subalgebra of the form
A1⊗ . . .⊗Ad ⊗Ad+1.

Proof.

For any finite F ⊆ Γ, let CF be a finite closed cover of KB

determined by the atoms of 〈F 〉.
Check, using the Sauer-Shelah lemma, that the family

C =
{
CF : F ∈ [Γ]<ω

}
,

witnesses that free-dim(KB)≤ d .



A generalization; cf. Heindorf (1997)

Theorem

Suppose that B = 〈Γ〉, where Γ contains no d + 1 independent
elements.
Then free-dim(KB)≤ d so B contains no subalgebra of the form
A1⊗ . . .⊗Ad ⊗Ad+1.

Proof.

For any finite F ⊆ Γ, let CF be a finite closed cover of KB

determined by the atoms of 〈F 〉.

Check, using the Sauer-Shelah lemma, that the family

C =
{
CF : F ∈ [Γ]<ω

}
,

witnesses that free-dim(KB)≤ d .



A generalization; cf. Heindorf (1997)

Theorem

Suppose that B = 〈Γ〉, where Γ contains no d + 1 independent
elements.
Then free-dim(KB)≤ d so B contains no subalgebra of the form
A1⊗ . . .⊗Ad ⊗Ad+1.

Proof.

For any finite F ⊆ Γ, let CF be a finite closed cover of KB

determined by the atoms of 〈F 〉.
Check, using the Sauer-Shelah lemma, that the family

C =
{
CF : F ∈ [Γ]<ω

}
,

witnesses that free-dim(KB)≤ d .



The Sauer-Shelah lemma

Lemma

Let N,d be natural numbers with 0≤ d < N and let
T = {1,2, . . . ,N}. Then for every family C ⊆ 2T with

|C |>
(
N

0

)
+

(
N

1

)
+ · · ·+

(
N

d

)
,

there exists a set S ⊆ T with |S |= d + 1 such that
{f |S : f ∈ C}= 2S .
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